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Dispersion effects on thermal convection in porous media 

By O D D M U N D  KVERNVOLDf A N D  PEDER A. T Y V A N D  
Department of Mechanics, University of Oslo, Norway 

(Received 10 July 1979 and in revised form 21 February 1980) 

The influence of hydrodynamic dispersion on thermal convection in porous media is 
studied theoretically. The fluid-saturated porous layer is homogeneous, isotropic and 
bounded by two infinite horizontal planes kept at constant temperatures. The super- 
critical, steady two-dimensional motion, the heat transport and the stability of the 
motion are investigated. The dispersion effects depend strongly on the Rayleigh 
number and on the ratio of grain diameter to layer depth. The present results provide 
new and closer approximations to experimental data of the heat transport. 

1. Introduction 
The subject of this paper is buoyancy-driven convection in a fluid-saturated porous 

medium. Horton & Rogers (1945) showed theoretically that convection currents are 
possible in a porous layer heated from below. Since then, much theoretical and experi- 
mental research has been reported in this field. We refer to Combarnous & Bories 
( 1975) who outlined important geophysical and technical applications. 

A porous medium is described in terms of an average continuum representation 
(Bear 1972). Local deviations from the average velocity and pressure are significant, 
and are accounted for, implicitly, in the macroscopic concept of permeability. Local 
temperature and velocity deviations give rise to the macroscopic concept of hydro- 
dynamic dispersion. The influence of heat dispersion on porous convection is investi- 
gated in this paper. Hydrodynamic dispersion is always present in the macroscopic 
description of a diffusion process taking place in a fluid flow through a porous medium. 
Its  magnitude relative to the molecular diffusion is an increasing function of the 
PBclet number. 

The theory of hydrodynamic dispersion was initiated by Taylor (1953) and reached 
an advanced level through the works by Saffman (1959, 1960). Saffman’s theory is 
complemented by Bear (1969) who used a different approach. The short, but valuabIe, 
contribution by Poreh (1965) is worth mentioning. 

Hydrodynamic dispersion has usually been connected with spreading of solutes and 
miscible displacement (Fried & Combarnous 1971). This is due to the important 
applications in oil production (Pfannkuch 1963) and groundwater pollution (Fried 
1975). 

Hydrodynamic dispersion may also be important in connexion with buoyancy- 
driven convection in porous media. The onset of convection when a basic flow is 
present has been analysed by Rubin (1974), Weber (1975) and Tyvand (1977). When 
the PBclet number is large, dispersion causes a strong delay of the onset of convection. 
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In  finite-amplitude convection without basic flow the PBclet number may become 
large enough for the heat dispersion to be important, even in the moderately super- 
critical regime of stable rolls. This is the case when the medium is relatively coarse, 
the ratio of layer depth to grain diameter being small. This has been pointed out in 
the nonlinear analysis by Neischloss & Dagan (1 975). They solved the stationary 
problem to sixth order in the series expansion proposed by Kuo (1961). In the present 
paper this stationary problem is solved numerically. The stability of the motion is 
also investigated. Our main results for the heat transport sharply contradict the 
corresponding results by Neischloss & Dagan (1  975). There is agreement at slightly 
supercritical Rayleigh numbers only. 

Straus (1974) and Kvernvold (1975) have performed similar analyses with neglect 
of dispersion. The present results provide improved approximations to experimental 
data of convective heat transfer through a horizontal porous layer heated from below. 

2. Formulation of the mathematical problem 
A fluid-saturated porous layer between two infinite horizontal planes is considered. 

The boundaries are impermeable and perfectly heat-conducting. The planes are 
separated by a distance h and have constant temperatures To and To - AT, the lower 
plane being the warmer. The saturated porous medium is homogeneous and isotropic. 
It has permeability K and molecular thermal diffusivity K,. 

We choose 

h, ( C p P ) m h 2 / A m ,  K m / h ,  AT, ~ o v ~ m / K  (2.1) 

as units of length, time t ,  velocity v = (u, v, w), temperature T and pressure p ,  respec- 
tively. Here cp is the specific heat at  constant pressure, p the density, po a standard 
density, A, the thermal conductivity of the saturated medium and v the kinematic 
viscosity of the fluid. Subscript m refers to the mixture of solid and fluid. Katto & 
Masuoka (1967) emphasized that the proper value of K ,  is given by A , / ( C , ~ ) ~ .  

According to Bear (1972, pp. 647, 652), the dimensionless equations may be written 

v+Vp-RTk = 0, (2.2) 

v . v  = 0, (2.3) 

T + v . V T  at = V.(D.VT) .  (2.4) 

Here Darcy’s law and the Boussinesq approximation have been applied, and the 
density is assumed to be a linear function of the temperature. k is a unit vector 
directed opposite gravity; R is the Rayleigh number 

KgyATh R =  
Kmv 

Here g is the gravitational acceleration and y the coefficient of thermal volume 
expansion. In equation (2.4) D is the dimensionless dispersion tensor. 

Generally the dispersion tensor may be written as 
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where I is the unit tensor. This tensor form has been derived by Poreh ( 1  965) and, in 
a different way, by Bear (1969). In  the above el and c2 are coefficients of longitudinal 
and lateral dispersion, respectively, relative to the flow direction (Weber 1975). 

The PBclet number is defined as 

P = Ud/Kf,  (2.7) 

where U is a characteristic, dimensional fluid velocity, Kf the thermal diffusivity of 
the fluid and d is a characteristic pore length. The porous medium is assumed to be 
composed of grains. Then d is taken equal to the average grain diameter. It is reasonable 
to regard P as a field variable. From (2.1) and (2.7) we then find 

Generally, the coefficients el and e2 are functions of the PBclet number. By the 
theory of Poreh (1965), el and c2 are constants (i.e. dispersion quadratic in P )  when 
P 4 1, but proportional to P-l (i.e. dispersion linear in P) when P > 1. In between 
these limit cases there is a pone of transition from the ‘quadratic law ’ to the ‘linear 
law’ for dispersion. The data presented by Bear (1972, p. 607) and Fried & Combarnous 
(1971) suggest this transition zone to be located between P w 5 and P - 50. The 
quadratic law is therefore hoped to give a reasonable approximation up to, say, 
P N 10. Accordingly, we will take el and c2 as constants in our analysis. 

Saffman (1960) has determined the dispersion coefficients el and e2 theoretically. 
In the limit of small PBclet numbers his results reduce to 

Here D is defined by 

(2.10) 

D is a dimensionless number, which will be termed ‘the dispersion factor’. We will 
apply formulae (2 .9)  when P is not above the order of 10. PrincipaIly a comparison 
with Saffman’s full expressions for el and c2 should be done. It is omitted because 
certain defects arise in his model when the PBclet number increases. His assumption 
of perfect mixing in each pore joint is a typical example. In addition, his full expression 
for c1 is unable to produce the linear law of dispersion when P 9 1. This linear law 
follows immediately from dimensional analysis (Poreh 1965; Bear 1972, p. 606). A t  
small P6clet numbers the theories of Saffman and Poreh agree. 

Existing measurements cannot be regarded as acid tests on Saffman’s formulae (2.9).  
This is due to experimental difficulties. Mechanical dispersion is measured as the 
difference between the two quantities ‘effective diffusion’ and ‘molecular diffusion ’. 
In the relevant range of PBclet numbers (P < lo),  the uncertainty in each of these 
quantities is highly comparable to the mechanical dispersion itself (see figures 31 and 
33 by Fried & Combarnous 1971). Since no other reliable constant values of el and 
c2 are available, we choose to base our study on Saffman’s asymptotic values (2.9).  

Saffman’s analysis is only concerned with the case of a solid matrix being insulating 
with respect to the diffusive component. The formulae (2.9) will also be assumed valid 
in the case of a thermally conducting matrix. Theory is lacking at this point. However, 

22-2 
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because the mechanical dispersion is basically a mixing phenomenon in the fluid phase, 
we believe that the dimensional mechanical dispersion is approximately independent 
of K~ when K~ is given. The fact that K, enters el and e2 (see (2.9) and (2.10)) is a mere 
consequence of our choice of non-dimensionalizing. 

A Cartesian co-ordinate system is introduced in our model. The z axis is directed 
opposite gravity, and the x and y axes are located a t  the lower boundary. i, j and k 
denote unit vectors in x, y and z directions, respectively. 

From (2.2) it follows that k .  V x v = 0, and the velocity field is solenoidal (2.3).  
Then the velocity is a poloidal vector 

v = Vx(Vxk$) = i$zz+j$vz-kV!$= a$ (2.11) 

given by a scalar function $. 
The temperature field is written as 

T = Tob/AT - z + 8 ( ~ ,  y ,  Z, t ) .  

By eliminating the pressure from (2.2), we obtain 

8 = - R-’V2$. 

(2.12) 

(2.13) 

By introducing (2.13) into (2.4) and utilizing (2.11), we obtain the governing equation: 

at 

av - 2c2 Rv. - i- (€1 - €2) Rv. VVZ,$ 
a2 

- e2vaV4$ - s2Vv2. VV2$ 

- (6’ - E 2 )  v , V(v . VV2$). (2.14) 

The requirements of perfectly heat-conducting and impermeable boundaries lead 
to the boundary conditions 

8 = w = 0  a t  z = O , l .  (2.15) 

Written in terms of $, this is equivalent to 

$ = $$, = 0 at z = 0 , l .  (2.16) 

Dispersion enters our problem solely through nonlinear terms, see (2.14). Therefore 
dispersion does not influence the onset of convection, see Neischloss & Dagan (1975). 
The critical Rayleigh number for the onset of convection is 

R, = 4m2, (2.17) 

corresponding to half-cell width equal to layer depth, i.e. critical wavenumber a, = T .  

These results were first obtained by Horton & Rogers (1945). 

3. Solution of the nonlinear equations 
We are going to study the finite-amplitude motion occurring a t  moderately super- 

critical Rayleigh numbers. To obtain satisfactorily accurate solutions, it is necessary 
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Truncatim Nusselt number 

Inl+Hm+l) G 6 6.78 
Inl+&(m+1) G 7 6.81 
In1 + + ( m + 3 )  < 5 6.83 
J n J + m  G 10 6.75 

TABLE 1. Convergence of numerical solution indicated by values of N from different 
truncations, R/Rc = 10, a/n = 1.8, D = &. 

to apply numerical methods. By means of Galerkin’s procedure we will find a stationary 
solution (2.14) and examine the stability of this solution with respect to small 
disturbances. 

It can be shown, along the lines of Schluter, Lortz & Busse (1965) that only two- 
dimensional rolls may be a stable solution of the stationary problem (2.14) for small 
supercritical Rayleigh numbers. This stationary two-dimensional solution subject to 
the boundary conditions (2.16) is formally written as an infinite series: 

C O W  

$ = C APCeipaxsinq;rrz, 
p=-CO g=1 

where each term satisfies the boundary conditions. The symmetry of the problem 
implies the restriction 

A = A-pq, 
Pq 

corresponding to convection cells without tilt. 
The expression for $ (3.1) is substituted into (2.14). The resulting equation is 

multiplied by e-inaxsinm;rrz and averaged over the whole fluid layer. An infinite set 
of algebraic equations for the unknown amplitudes An, is found: 

The matrix C is a function of a and R. The matrices U and V are functions of a, R 
and D. 

In  order to solve the set (3.3) the series must be truncated. We choose to retain 
only terms with 

(3.4) In1 + (m + 1)/2 6 M ,  

where M is a sufficiently large number, termed the truncation parameter. Owing to 
the symmetry of the equations (3.3) the solution contains only amplitudes with 
n + m even, giving $M(M i- 1 )  equations to be solved. 

With our choice of truncation coniputer capacity forbids us to make any careful 
examination with M larger than 6. This is due to the triple term in (3.3), represented 
by the matrix V. To test the convergence, we have compared the solutions corres- 
ponding to  M = 6 and M = 7.  Two other truncations have also been tried. The results 
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are given in table 1. The physical quantity concentrated upon is the Nusselt number: 

Qh - -k . (D.VT) , , , ;  N = - -  

._ 

A, AT 

= [I -B,+s22-E2U20,]*O; 

(3.5) 

Q is the heat transport per unit time and area through the layer; the overbar denotes 
a horizontal average. 

After having obtained a solution, $s, of the stationary problem, the stability of this 
solution with respect to small disturbances is examined. By introducing $ = $s + $' 
into (2.14) and linearizing with respect to the infinitesimal disturbances $ I ,  the 
following equation is found: 

+ ( E I - E ~ )  R(S@' .VV?1c.,+ S$s. VVZ,$') 

-€2(2S$'. S$sV4$rs+ (S$J2 V4f) -E2(2V(S@'  ,S$J .VV2kS 

+v(S$s)2.vV2$-')- (E1-E2) [SyY.v(S$s.vV2$s) 

+ fybs. V(S$'. vv2$s) + S$s. V(S$hs. VV2$l)], (3.6) 

$' = $is = 0 at z = 0 , l .  (3.7) 

with boundary conditions 

If there exists a solution of (3.6) with growing time dependence, the stationary 

A general expression for the perturbation, $', is given by 
solution is said to be unstable. Otherwise it is stable. 

where a and b are free parameters. The series (3.8) is introduced into the equation (3.6). 
The resulting equation is multiplied by e-inOx e-i(ax+b+ut sin mlrz and averaged over 
the whole fluid layer. As in the stationary problem only terms with Jnl + +(m + 1)  < M 
are retained. The system of linear homogeneous equations constitute an eigenvalue 
problem for u, giving 

CT = u(R, a, D, U, b) .  (3.9) 

The most unstable disturbances correspond to a = 0 and b 4 0 as in ordinary 
porous convection, see Straus (1974) and Kvernvold (1975). These disturbances are 
termed cross-rolls if b is of the same order of magnitude as a, and zigzags if b is very 
small. 

4. Discussion of solutions 

discussed. We first concentrate on the two-dimensional stationary problem. 
In this chapter some characteristic features of the numerical solutions will be 

The heat transport is a quantity of major physical interest. It is given by the 
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D 
A 

I > 
1 1 1 

1 5 0  
--- R/Rc 0 6 0 0  9B 2 4  

--_ 1 

Analytical 1.3 1.400 1-399 1.394 1.391 1.364 
Numerical 1.2 1.352 1.351 1.349 1.347 1.333 

1.4 1.634 1.633 1.631 1.629 1.613 
1.6 1.870 1.870 1-869 1.869 1.860 
1.8 2.072 2.074 2.076 2.079 2.086 

TABLE 2. Analytical (formula (4.1)) and numerical results 
for the Nusselt number when a = T .  

Nusselt number defined by (3.5). In addition to the ordinary diffusion term ( - 8,),,o, 
which contains dispersion implicitly, there are two new terms with explicit dispersion 
dependence. These are a term of second degree, (e2>),=,, and one of third degree 
( - €2u20z)z=o. The sum of these two terms has to be positive. 

The calculations show that dispersion always reduces the average temperature 
gradient a t  the boundary. Up to RIR, = 1-65 the Nusselt number is also reduced, 
compared with ordinary porous convection. In table 2 some values of N a t  small 
supercritical Rayleigh numbers are given. The analytical result is given by the first 
approximation in nonlinear theory: 

- 

N = 1 + 2(R/R,- 1 )  [1 + 2n2( - 2 € 1 + E 2 ) ] ,  (4.1) 

which was first derived by Neischloss & Dagan (1975). It only gives the slopes a t  
which the Nusselt number curves start out. Due to the strong curvature of these 
curves (see figure l), formula (4.1) is not a good approximation. However, it  agrees 
qualitatively with the numerical results for small supercritical Rayleigh numbers. 
The heat transport is increased by dispersion when R > 1*65R,. At first this increase 
is very small, but it grows rapidly with the Rayleigh number. From four or five times 
the critical Rayleigh number, the dispersion effects on the heat transport become 
important. See figure 1, where N is displayed as a function of R/Rc for different values 
of D .  Here the Nusselt number has been maximized with respect to the wavenumber. 
If D is not too small, the Nusselt number curve possesses an inflexion point. 

The strong increase in the Nusselt number at  large Rayleigh numbers primarily 
arises from the third-degree term. This is shown in table 3, where the contributions 
to the Nusselt number from the first-, second- and third-degree terms are listed for 
some cases. Some approximations for these terms are also listed, disclosing the im- 
portance of solving the full problem. It is indicated that the basic contribution to the 
third-degree term is expressed by ( - e2u2 Oz)B=O. 

Except for small supercritical Rayleigh numbers, the explicit €,-dependence 
provides the most important dispersion effect on the Nusselt number (see table 3). 
However, it  is difficult to discuss the implicit el- and €,-dependence in the problem 
because of the complex nonlinear interactions. 

The above-mentioned results contradict most of the analytical results of Neischloss 
& Dagan (1975) ,  who found that dispersion reduces the heat transport for all 
examined Rayleigh numbers. 

In figure 1 ,  we choose the wavenumber which gives maximum Nusselt number. 
The variation of the Nusselt number with the wavenumber is exhibited in figure 2, 

_-  
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FIGURE 1. N versus R/Rc for some values of D = (K,/K,) ( C J / ~ ) ~ .  
RIRc 

3 

1 

1/60 
2.776 
0.122 
0.203 
3.100 
2.927 

0.122 
0.2 18 
0.216 

6 6 

1 1 

1/60 1/100 
3.588 3.810 
0.522 0.292 
1.216 0.739 
6.326 4.841 
4.070 4.070 

0.406 0.243 
1.147 0.689 
1.361 0.820 

6 

2 

1/100 
4.099 
0.179 
0.620 
4.798 
4-435 

0.166 
0.536 
0.655 

TABLE 3. Comparison of the different contributions to the Nusselt number, 
and some approximations of these. ' 

for the case D = 1/80. Curves for R/R, equal to 2, 4, 6, 8 and 10 are shown. For 
comparison the corresponding curves for D = 0 are also displayed (dashed curves). 
Dispersion turns out to reduce the wavenumber of maximum heat transport 
considerably. 

In  figure 3 some dispersion effects on the temperature field are shown. The isotherms 
may r>e noticeably distorted. The solid curves are isotherms for the case D = 1/150, 
while the dashed curves are corresponding isotherms for D = 0. The effects increase 
strongly with increasing Rayleigh numbers. It is interesting to study the vicinity of 
the lower boundary: In the region of ascending fluid the temperature gradient is 
reduced by dispersion. In  most of the region of descending fluid the gradient is 
steepened. The former effect is always the stronger, so that the average temperature 
gradient is reduced due to dispersion. 
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FIGURE 2. N veww a/n for some values of RIR,. - , D = 1/80. ---, D = 0. 

z =  1 

z = o  

z =  1 

z = o  z - u  

FIGURE 3. Isotherms for T - T,,/AT. -, D = 1/150. - - -, D = 0. 
(a) R/Rc = 4; (a) R/Ro = 6. 
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1 I I 
1 2 3 

~ l %  
FIGURE 4. Stability domains for the steady two-dimensional motion in the a/a,, R/R, plane. 

-, cross-roll instability; - x -, zigzag instability. 

The streamline pattern is never distorted significantly by dispersion in our range 
of computation. The velocity amplitude however, is influenced by dispersion. Follow- 
ing Palm, Weber & Kvernvold (1972), the root mean square velocity of a cell is 
approximately given by 

((v"))+ = R q N -  l)+, (4.2) 

where the pointed bracket denotes vertical average. By means of (2.8), this enables 
us to estimate the average PBclet number defined by 

~d ~d Pa, = ((v"))3 2- = R q N -  1)k"-. 
'cr h 'cr h 

(4.3) 

Deviations from our theory become significant when Pa, is about 10. We notice that 
PaV cannot be expressed by D alone, so that formula (4.3) must be applied to each 
specific case. 
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We have investigated the stability of this steady nonlinear roll solution in the case 
of D = 11150. The results are displayed in figure 4, and compared with. the case of 
D = 0. The zigzag instability is not significantly influenced by dispersion. The rest 
of the stability domain is bounded by cross-roll disturbances, which may be strongly 
influenced by dispersion. 

At moderately supercritical Rayleigh numbers (R < 5R,), dispersion slightly re- 
duces the range of stable wavenumbers. However, a t  larger Rayleigh number a 
strong extension of the stability domain is present. The second critical Rayleigh 
number, above which no stable steady solution exists, is drastically delayed. Actually, 
our choice D = 1/150 is not small enough to determine this upper limit, within our 
range of computation. 

5. Comparison with experiments 
In this chapter the results from the analysis above will be compared with some 

experimental data of the heat transport. In  figure 5 some data from Buretta (1972) 
are shown. This experimental series was performed with glass beads saturated by 
water, where K J K ~  = 3a.75 and d / h  = 1/15. The corresponding value of the dispersion 
factor is 1/60. Our theoretical curve for D = 1/60 shows excellent agreement with 
Buretta’s experiments. For comparison the theoretical curve for neglect of dispersion 
is displayed. This clearly demonstrates the importance of dispersion. 

From formula (4.3) the average PBclet number a t  the termination of our theoretical 
curve in figure 5 is about 15. Then our theory may be inappropriate. Only up to R 
about 200-300 the conditions of our theory are fulfilled. The average Reynolds 
number, as defined in Palm et al. (1972, equation (5.11))) does not exceed 2. 

In  figure 6 two sets of experimental data by Combarnous (1970) are compared with 
the present theory. Also these experiments are performed with glass beads in water. 
It is interesting that the theoretical trend of increased heat transport for increased 
coarseness of the porous medium is actually confirmed by these experiments. The upper 
and lower theoretical curve corresponds to D = 1/60 and D = 1/107, respectively. 
We have chosen to terminate these curves a t  PBclet numbers of 15 and 10, respectively, 
and Reynolds numbers about 2. 

The experimental data of figures 5 and 6 indicate an inflexion point in the Nusselt 
number curves. This phenomenon was explained by Combarnous (1970) by the 
occurrence of a new linearly unstable mode. The present theory gives an alternative 
explanation which seems very good. One must, however, keep in mind that these 
effects become important a t  PBclet numbers not far below the value a t  which our 
approximations become uncertain. 

There are many other experiments confirming the trend of our theory giving a 
Nusselt number above the value of ordinary porous convection. See the review article 
by Cheng ( 1978). It is, however, desirable to perform experiments with a systematic 
variation of the dispersion factor, D. Most experiments involve a ratio d / h  not small 
enough for dispersion effects to be neglected. Experiments on more finely grained media 
are wanted. They are hoped to give a closer approximation to the theory of ordinary 
porous convection (Straus 1974). 

When the pore Reynolds number exceeds unity, the flow resistance is higher than 
predicted by Darcy’s linear law, due to a nonlinear friction term (see Bear 1972, p. 126). 
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FIGURE 5. N veraw R. -, theoretical curves; e, experiments by Buretta (1972). 

7 -  - 

N 
4 -  

' R  
FIGURE 6. NverszcsR. --,theoretical curves: upper curve, D = 1/60; lower curve, D = 1/107. 
a, experiments by Combarnous (1970), with d / h  = 1/15, K , / K ~  = 3.75. +, experiments by 
Combarnous (1970), with d/h = 1/20, K,/K, = 3.75. 

In this regime the velocity amplitude is smaller than predicted by our theory. This 
will cause a considerable reduction in the heat transport, which is observed in the 
experiments by Schneider (1963) and Elder (1967). Heat dispersion will be strongly 
reduced, as it is a quadratic function of velocity. 

The importance of dispersion compared with the nonlinear term in Darcy's law is 
indicated by the Prandtl number of the fluid 

Pr = v , / K ~ .  (5.1) 
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In  the present study we have assumed that dispersion is more important than the 
nonlinear term in Darcy’s law, which means that Pr > 1. 

6. Summary 
The influence of hydrodynamic dispersion on thermal convection in a porous layer 

has been investigated theoretically. The steady, supercritical motion, the heat trans- 
port and the stability of the motion have been examined. 

The magnitude of the dispersion effects is characterized by the dispersion factor 
D = ( K , / K ~ )  (d/h)Z, depending strongly on the coarseness of the porous material. 
Hydrodynamic dispersion slightly reduces the heat transport when R < 1-65R,, but 
increases it with rapidly growing strength when the Rayleigh number increases further. 
Hydrodynamic dispersion strongly extends the range of Rayleigh numbers giving 
stable convection rolls. 

The present theory should be useful a t  average PBclet numbers smaller than 10 and 
average Reynolds numbers not above the order of 1 .  Our theoretical predictions of the 
heat transport show good agreement with experimental data by Buretta (1972) and 
Combarnous (1970). This alcordance lends support to the dispersion theory of Saffman 
(1960) on which this study is based. 
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